Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Chembiochem ; 22(24): 3410-3413, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1427071

ABSTRACT

The SARS-CoV-2 non-structural protein 14 (nsp14), known as exoribonuclease is encoded from the large polyprotein of viral genome and is a major constituent of the transcription replication complex (TRC) machinery of the viral RNA synthesis. This protein is highly conserved among the coronaviruses and is a potential target for the development of a therapeutic drug. Here, we report the SARS-CoV-2 nsp14 expression, show its structural characterization, and ss-RNA exonuclease activity through vibrational and electronic spectroscopies. The deconvolution of amide-I band in the FTIR spectrum of the protein revealed a composition of 35 % α-helix and 25 % ß-sheets. The binding between protein and RNA is evidenced from the spectral changes in the amide-I region of the nsp14, showing protein conformational changes during the binding process. A value of 20.60±3.81 mol L-1 of the binding constant (KD ) is obtained for nsp14/RNA complex. The findings reported here can motivate further studies to develop structural models for better understanding the mechanism of exonuclease enzymes for correcting the viral genome and can help in the development of drugs against SARS-CoV-2.


Subject(s)
Exoribonucleases/metabolism , RNA, Viral/metabolism , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/metabolism , Exoribonucleases/chemistry , Protein Binding , Protein Conformation , RNA, Viral/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Viral Nonstructural Proteins/chemistry
2.
ACS Sens ; 5(12): 3655-3677, 2020 12 24.
Article in English | MEDLINE | ID: covidwho-955889

ABSTRACT

Diagnosis of COVID-19 has been challenging owing to the need for mass testing and for combining distinct types of detection to cover the different stages of the infection. In this review, we have surveyed the most used methodologies for diagnosis of COVID-19, which can be basically categorized into genetic-material detection and immunoassays. Detection of genetic material with real-time polymerase chain reaction (RT-PCR) and similar techniques has been achieved with high accuracy, but these methods are expensive and require time-consuming protocols which are not widely available, especially in less developed countries. Immunoassays for detecting a few antibodies, on the other hand, have been used for rapid, less expensive tests, but their accuracy in diagnosing infected individuals has been limited. We have therefore discussed the strengths and limitations of all of these methodologies, particularly in light of the required combination of tests owing to the long incubation periods. We identified the bottlenecks that prevented mass testing in many countries, and proposed strategies for further action, which are mostly associated with materials science and chemistry. Of special relevance are the methodologies which can be integrated into point-of-care (POC) devices and the use of artificial intelligence that do not require products from a well-developed biotech industry.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Immunoassay , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Artificial Intelligence , Humans , Point-of-Care Systems , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL